
Scamp-B
 

Page of 1 23 Scamp-B v3.5 Adrian Rawson © 2021

User Guide

Scamp-B
Introduction	 3

Description	 3

Layout	 3

Operation	 3

Main Controls	 4

Loading a Program	 5

Programming	 5

Using the Keys	 5

Memory Editing	 7

Controlling a Program	 8

Setting a break on instruction	 8

Setting a break on register value	 9

Writing Assembly Code	 11

Assembler Editor Menus	 14

Paper Tape Reader	 16

PTR Device Operation	 17

Appendix	 18

TOS-B Instruction Set	 18

TOS-B System Functions	 19

Assembler Basics Guide	 20

Running Instructions	 21

Running Issues	 22

Modification History	 23

Page of 2 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B
Introduction
Scamp-B is a graphical simulation offering a window into those halcyon days of
computing when data was input through switches, and register contents were
displayed on banks of lamps. A time when the programmer had an intimate
relationship with the machine at its most basic level.

The inspiration for Scamp-B came from my involvement with Phil Tipping’s PlasMa
hardware project, a real machine with real lamps and switches and a roadmap to
emulate not just a mainframe style central processor, but also a selection of
peripheral devices. PlasMa is designed to run a selection of instruction sets
offering varying capabilities and complexity. Two of these are based on Princeton
University’s Toy-A and Toy-B code sets. Scamp-B has intercepted Toy-B, but
renamed it TOS-B to allow for divergence without compromise.

Scamp-B aims to improve the programmer’s experience through the integration of
a 256 word memory map display and an assembler editor. The assembler which
also front-ends the PlasMa simulator PlasMaSim, is another inspiration from the
PlasMa project.

Description
Scamp-B consists of 16 general purpose 16 bit registers, an instruction register
and a program counter. The program counter is also 16 bits but the top, most
significant, 8 bits aren’t required as the memory’s maximum address is 256, hex
’FF’. The registers are displayed in binary, on or off, format, whereas the memory
display uses a hexadecimal representation of its contents. Calculations are
performed using two’s complement 16 bit integer values in the range -32768 to
+32767.

Layout
Scamp-B uses three windows to display its functionality. The main window
contains all the key switches for program control and a display of all the registers.
The Memory Map window displays the memory’s contents in a 16x16 table array
and the Oper window (operators console), with its eight key switches facilitates
program input and output. The assembler editor is controlled via its own menu.

Operation
When the Scamp-B program is loaded it automatically runs a TOS-B program
called ‘programb.plh’. This is for demonstration purposes and may be deleted or
renamed if not required.

Page of 3 23 Scamp-B v3.5 Adrian Rawson © 2021

http://philizound.co.uk/plasma/plasma.html
http://philizound.co.uk/plasma/plasma.html
https://www.bbc.co.uk/bitesize/guides/zwsbwmn/revision/1
https://www.bbc.co.uk/bitesize/guides/zp73wmn/revision/1
https://www.bbc.co.uk/bitesize/guides/zjfgjxs/revision/5

Scamp-B
Main Controls

DATA/BREAK keys

Principally used for setting a hexadecimal word’s worth of data for copying to
registers or memory. They are also used for setting a register break pattern or a
PlasMaSim program name.

CLR/FFFF key

Sets the DATA/BREAK keys to ‘FFFF’ or clears them to all off.

ADDRESS keys

Used solely for setting a memory address for writing DATA.

CLR/INC key

Either increments the address set on the ADDRESS keys or clears them to all off.

BIN/DEC key

Switches the register display to either binary mode or hexadecimal/decimal mode.

SEL REG keys

Used to set a register number (0-F) to write DATA to or to BREAK on.

LOAD keys

One key directs data from the DATA keys to REGister or MEMory. The other directs
data from the DATA keys to the Program Counter(PC) or Instruction Register(IR).

PROG keys

Used for controlling program running.

SLOW key slows down program execution and disables Oper clear.

BRK key enables break on register value.

ZERO key zeros all the registers, clears the Oper, resets the Program
Counter and loads the Instruction Register from memory location zero.

CLR MEM key sets all memory locations to hex 0.

LOAD key loads the program set on the DATA keys or opens a file dialog.

PTR key loads data from the Paper Tape Reader.

RUN key runs the program loaded in memory.

STEP key executes the current instruction and moves the Program Counter
to the next one.

NB.
Keys with labels above and below have two operations, whereas a single label
denotes a single action. The keys sense mouse clicks above or below the white
centre line depending on their operation.

	 	

	 	 The black rectangle at bottom left displays the Scamp-B program run time.

Page of 4 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B

Loading a Program

If the DATA keys are set to all OFF and the LOAD PRG key clicked, a file dialog is
opened showing files of type ‘.plh’. These are assembled source files in sixteen bit
hexadecimal format containing TOS-B codes and data.

Existing programs may also be loaded from the DATA/BREAK keys provided that
they are named inline with the PlasMaSim scheme, i.e. four hexadecimal
characters followed by file type ‘.plh’, with the first character always ‘2’ denoting a
TOS-B program. For example ‘2002.plh’, 2901.plh’,’2FFF.plh’. These names can
be enhanced to be more descriptive as long as they contain the four hex
characters and type ‘.plh’. On clicking the LOAD PRG key, the DATA/BREAK keys
are matched with filenames in Scamp-B’s local directory.

If the keys are set to read a non-existant program or there are two or more
programs that match, an error is displayed on the memory map screen. If a unique
program is found then a dialogue box appears as shown below.

Programming

Using the Keys

Programs can be entered into memory using the DATA and ADDRESS keys.

Here is a very simple three instruction example that writes to the Oper.

We will write a decrementing loop that prints the loop value to the Oper. To do this
we will use the ‘djnz’ instruction that decrements a register, checks it for none zero
then jumps to an address. A full list of instructions is shown in, TOS-B Instruction
Set

First we need to load up a register with the number of times the loop should run.
For this we’ll use the ‘lda’ instruction that loads a value into a register.

Then we’ll write our decremented loop number to the Oper using the system ‘Oper
Write’ instruction.

Page of 5 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B
Finally we’ll check the current register value for zero, if it’s not, decrement it and
loop back using the ‘djnz’ instruction.

The register we’ll use is REG-4

First load REG-4 with decimal 15 (hex F) using ‘lda’ instruction ‘B40F’.

Set the DATA/BREAK keys to hex ‘B40F’ = 1011.0100.0000.1111 and the
ADDRESS keys to ’0’ (all off). To write the data to the memory location click the
green MEM key, and hex ‘BF04’ will appear in the first location in the Memory Map
Window.

The Oper Write instruction code is hex ‘4402’. So set 0100.0100.0000.0010
on the DATA/BREAK keys, increment the ADDRESS keys to 0000.0001 and write
to memory with the MEM key.

Now write the ‘djnz’ instruction hex ‘7402’ to memory location 2 and finally write a
Halt instruction hex ‘0000’ to address 3.

So to summarise, the program should consist of the following instructions.

address 0	 B40F	 	 load REG-4 with value ‘F’

address 1	 4402	 	 write value in REG-4 to the Oper

address 2	 7401	 	 decrement REG-4 if not zero jump to address 1

address 3	 0000	 	 halt

The Memory Map screen should now look like the graphic below.

Page of 6 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B
To initialise the program we have just written we need to set the Program Counter
to the first address. To achieve this click on the ZERO key. You will see a box
appear around the first instruction and its binary value appear in the Instruction
Register.

Now the program can be run by clicking on the RUN key, or stepped through one
instruction at a time with the STEP key.

If everything is correct the decremented loop values will appear on the Oper as
shown below on run completion. The hexadecimal value (preceded by $) followed
by its decimal equivalent.

To rerun the program click on the ZERO key followed by the RUN key.

Memory Editing

In addition to using the DATA and ADDRESS keys to write to memory, the mouse
can be used to select an address to change, but cannot be used to write to blank
memory locations.

Using the programming example from before, we could decide to change it to loop
more times by setting a larger number in REG-4 at the start.

To change the ‘lda’ instruction ‘B40F’ to ‘B4FF’ we set the DATA keys to ‘B4FF’.
Now RIGHT-CLICK on the ‘lda’ instruction at memory location ’0’, the text will
change to yellow and a dialogue box will be displayed as shown below.

Page of 7 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B

The dialogue box shows a decode of the intended instruction whilst the yellow text
at the bottom of the screen shows the unchanged instruction decode.

Click OK in the dialogue box to commit the change. Then click ZERO key followed
by RUN key to rerun the program. You will notice that certain values display a
character to the right of the decimal value. This is because Scamp-B’s Oper write
instruction displays ASCII decodes where it can.

Controlling a Program

As already mentioned in Main Controls, a program can be executed one instruction
at a time using the STEP key or can be slowed down using the SLOW key, or RUN
normally.

Also break points can be set to stop a program at a particular point in its
execution.

Setting a break on instruction

As a program runs it loads an instruction from memory into the instruction register
which is then executed. Setting a break on instruction stops the program running
at the point where the instruction is about to be executed.

Page of 8 23 Scamp-B v3.5 Adrian Rawson © 2021

https://www.rapidtables.com/code/text/ascii-table.html

Scamp-B
To set a break on instruction simply click on the instruction’s location in memory
where running must stop. The instruction will change colour to indicate a break is
set. Multiple breaks may be set in this manner. To clear a break click on it again.

So we could choose to stop our program on the ‘djnz’ instruction and look at
register 4 to see its value before the jump instruction is tested for zero. The graphic
below shows a break set at memory address hex ’02’ after the RUN key has been
clicked.

The program has stopped after the first Oper write whilst register 4 has not yet
been decremented and tested for zero. Repeated clicks of the RUN key will show
register 4 counting down with subsequent writes made to the Oper.

The text displayed at the bottom of the Memory Map screen shows an
interpretation of the instruction (‘7401’) stopped on by the break..

NB. The instruction interpretation displayed on the screen’s bottom line is replaced
with the break instruction whilst the mouse button is held down.

Setting a break on register value

This facility is useful for trapping a point in a program where a register contains a
particular value. To set a break on register value the value is input on the DATA/
BREAK keys, the register number is input on the SEL REG keys and the BRK key
is set. Using our program again we could choose to stop the program when
register 4 reaches value ‘0F’. To achieve this, unset the Memory Break by clicking
on it. Then set the Register Break as shown below.

Page of 9 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B

The DATA/BREAK keys are set to ‘000F’ which is the value we want to stop on, the
SEL REG keys are set to ’4’ for register 4, and the BRK key is switched up. The
blue lights are illuminated showing the break value set.

Unlike the break on instruction example that we saw before, the instruction will be
executed and the register loaded.

When the RUN key is clicked the program will run until the break point is detected
and the following graphic will be displayed.

This shows register 4 has stopped with contents ‘000F’ and register 4 now has a
blue lamp displayed. The decrement and jump instruction has been obeyed, and
the Oper write instruction ‘4402’ is loaded into the Instruction Register.

On clicking the STEP key, the ‘4402’ instruction writes the current value of register
4 to the Oper, and the break on register value is cancelled.

Page of 10 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B
To continue running the program click the RUN key

NB. The blue lamps indicate the break values as set by the BRK key. The BRK key
must be switched up to implement the break. To change a break value the BRK
key must be switched off and on again to re-read the DATA/BREAK and SEL REG
keys.

Writing Assembly Code
When Scamp-B loads it runs the start-up program ‘programb.plh’, and an
assembly editor window is created but iconised. If ‘programb.plh’ is renamed or
deleted Scamp-B will load with the assembly editor window open, as shown in the
graphic below. This shows the Mac version where the editor menu is displayed at
the top of the screen from which the editor can be opened. On Windows and Linux
the menu is integrated with the editor window so must be opened from the icon.

If we take the simple example from before and use the mnemonics taken from the
TOS-B instruction set, our program might look like the following graphic.

Page of 11 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B
Some of the benefits of writing in assembly language are demonstrated here. The
first line ‘#Reg4toOper $402’ is an Equate statement that assigns the name
Reg4toOper to the value $402 (hexadecimal) enabling that value to be referenced
by name.

Further down the screen is a Label ‘.write_oper’ that assigns a name to a code
address. For further information see the Assembler Basics Guide.

To convert the assembly language ‘example.pls’ to TOS-B hex code ‘example.plh’
use the File menu option ‘Save&Assemble…’ as shown below.

If there are no detected errors in the ‘.pls’ file the lower console screen will show a
Seems OK message.

The TOS-B hex code produced can now be loaded by selecting File menu
‘Load…’. This action iconises the editor window.

To further develop the program open the editor window, change the assembly
language instructions, re-assemble and re-load.

When stepping through a program that has been assembled, the prompt line at the
bottom of the Memory Map window will be coloured cyan. This indicates that there
is a map (.plm) file present for the program. This adds additional information on the
prompt line where it finds a match between a code address and a label. The
graphic below shows an example of this.

Page of 12 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B

It can be seen here that address 1 has the label [.write_oper].

This facility may sometimes cause confusion, where a value loaded into a register
happens to map to a valid address the label will be shown on the prompt. 

Page of 13 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B

Assembler Editor Menus

File Menu:

New	 	 	 Create a new .pls file.

Open		 	 Open an existing .pls file.

SaveAs	 	 Save current .pls file to a new name.

Save	 	 	 Save current .pls file.

Save&Assemble	 Save current .pls file and create .plh file.

N.B. File containing errors will still be saved but .plh
file won’t be created.

Load	 	 	 Load the assembled .plh file into memory for execution.

This option is greyed out if the editor thinks there is
nothing to load.

Edit Menu:

	 Copy	 	 	 Copy selected text to the copy buffer.

	 Paste		 	 Paste the copy buffer at the cursor location	.

	 UnDo		 	 Undo previous edits.	 	

	 ReDo		 	 Re-do previous undos.

	 Clear Selection	 Delete selected text.

	 Clear All	 	 Clear the editor window.

Tape:

	 None	 	 	 No paper tape file is produced

	 PTR8		 	 The assembler creates an 8 bit paper tape image file.

Hints:

	 Off	 	 	 Hints are disabled

	 On	 	 	 Assembler mnemonics create a pop up help (experimental)

Page of 14 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B
Assembler:

	 scampa	 	 Selects ‘scampa’ as the assembler program.

Creates

Hex code file .plh

Map file containing equates and labels .plm

Optional 8 bit paper tape file .pl8

	 plasm2	 	 Selects ‘plasm2 as the assembler program.

Creates

Hex code file .plh

Listing file containing detailed interpretation of source,
helpful when fault finding .pll

Optional Map file containing sorted equates and
labels .plm (always selected by Scamp-B).

Optional 8 bit paper tape file .pl8

Optional 7 bit plus parity paper tape file .pl7

scampa is bundled with Scamp-B whereas plasm2 is a downloadable item from
the PlasMa project. Scampa only assembles TOS-B mnemonics and is still playing
catchup with plasm2 which can assemble both Toy-A and Toy-B, and offers better
error detection and resolution.

NB. All filenames are derived from the source (.pls) filename.

Page of 15 23 Scamp-B v3.5 Adrian Rawson © 2021

http://www.philizound.co.uk/plasma/plasma.html#downloads

Scamp-B
Paper Tape Reader
Bundled with Scamp-B is a paper tape reader program. This runs alongside
Scamp-B as a peripheral device and communicates asynchronously using TOS-B
system PTR instructions, or the LOAD PTR key on the main panel.

The graphic below shows the device in its various stages of operation.

When the paper tape program is running with Scamp-B it attaches to the side as
shown below.

Allocate Load Run 7+Parity

Page of 16 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B
PTR Device Operation

Using TOS-B system instructions a paper tape can be read as follows:

Call PTR Get Status and wait for PTR device to respond with status 1 RDY

	 This call will light the ALLOC lamp on PTR device

Call PTR Request Data

This will wait for a tape to be loaded on PTR device and for RUN to be selected

Call PTR Get Status

check for status 3 EOT - tape read to end - finish

PTR device will send status 3 EOT when there is no more data

check for status 4 DATA_RDY

PTR device will send 4 DATA_RDY when it has a byte in its buffer

Call PTR Get Data

	 This will send a byte of data from PTR device to Scamp-B

Call PTR Get Status

check for status 3 EOT - tape read to end - finish

PTR device will send status 3 EOT when there is no more data

check for status 4 DATA_RDY

PTR device will send 4 DATA_RDY when it has a byte in its buffer

Call PTR Get Data

	 This will send a byte of data from PTR device to Scamp-B

……ETC

To load a tape directly without using a TOS-B program, press the LOAD key on
PTR device and select a file to load. When the tape is loaded press RUN on the
PTR device. Then switch the LOAD PTR key up on Scamp-B’s main panel. On
some platforms this may appear to hang for a moment, but eventually the tape
data will appear in Scamp-B’s memory.

If an address is set on the ADDRESS keys the tape will be loaded starting at that
address in memory.

If the 7+Parity button is pressed the tape will light the parity error lamp on
detecting a parity error.

The PTR program is sent a close down message when Scamp-B is closed. This
invokes a timeout on Windows that causes a closure delay if PTR isn’t present. 

Page of 17 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B
Appendix

TOS-B Instruction Set

Function Action Assembler
Mnemonic

0 Hlt Halt program hlt

1 Add d <— s + t add rd rs rt

2 Subtract d <— s - t sub rd rs rt

3 Multiply d <— s * t mul rd rs rt

4 System Call See Function Table sys function

50 Jump PC <— aa Jmp aa

51 Jump Indexed PC <— s + t Jmpi rs rt

60 Jump if greater If (d > 0) PC <— aa Jp rd aa

(rd < 8)

61 Jump if greater, indexed If (d > 0) PC <— s + t Jpi rd rs rt

(rd < 8)

70 Jump and decrement d = d - 1; if (d <> 0) pc <— aa djnz rd aa

(rd < 8)

71 Jump and decrement, indexed d = d - 1; if (d <> 0) pc <— s + t djnzi rd rs rt
(rd < 8)

80 jump and link d <— pc + 1; pc <— aa Jlk rd aa

(rd < 8)

81 Jump and link, indexed d <— pc + 1; pc <— s + t Jlki rd rs rt
(rd < 8)

90 Load d <— mem[aa] ld rd aa

(rd < 8)

91 Load, indexed d <— mem[s + t] ldi rd rs rt

(rd < 8)

A0 Store mem[aa] <— d st aa rd

(rd < 8)

A1 Store, indexed mem[s + t] <— d sti rs rt rd

(rd < 8)

B0 Load Address d <— aa lda rd aa

(rd < 8)

B1 Load Address, indexed d <— s + t ldai rd rs rt
(rd < 8)

Page of 18 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B

In the table above the characters marked in RED denote the destination register d, source register
s and source register t. In many instructions the d(estination) register can only be in the range 0 to
7. This is identified in the assembler mnemonic column by (rd < 8).

TOS-B System Functions

In the table above the characters marked in RED denote instruction variables provided through
register d. Where a Code includes a ‘_’ its value is irrelevant but must be something, usually ‘0’.

The PlasMa project owns the copyright to the system function set that TOS-B has
embraced, so the definitions of all other system functions may not be included in
this document. They can however be downloaded from the PlasMa project and are
contained in the PlasMaSim2 + Plasm2 package.

Scamp-B’s TOS-B system functions don’t follow exactly the Toy-B I/O
specification shown in ‘PlasMa-InstructionSet-Toy-B-115’. Functions affected are
as follows:

Stop system Timer	 	

- Pseudo implementation.

Write MT Lights

- Inner and outer rings have linked behaviour.	 	

Read Switches

- Address Keys are selection 4, selections 0-3 return Data/Break Keys.

TTY Write (Oper Write)

- Ascii character values are also displayed. 

C XOR d <— s ^ t xor rd rs rt

D AND d <— s & t and rd rs rt

E0 Shift Right d <— d >> aa shr rd aa

(rd < 8)

E1 Shift Right, indexed d <— d >> [s + t]
 shri rd rs rt
(rd < 8)

F0 Shift Left d <— d << aa shl rd aa

(rd < 8)

F1 Shift Left, indexed d <— d << [s + t] shli rd rs rt
(rd < 8)

Function Action Assembler
Mnemonic

Function Action Description Code

Oper Read Key
group

d <— Oper Keypad Halt the program and wait for 4
digits

d_1

Oper Write d —> Oper display Display register contents on Oper d_2

Page of 19 23 Scamp-B v3.5 Adrian Rawson © 2021

http://philizound.co.uk/plasma/plasma.html#downloads

Scamp-B
Assembler Basics Guide

%Directives

%s<n> 	 defines the PlasMa microcode (Toy-A = 1, Toy-B = 2, etc)

This is not required by scampa but must be set to 2 if plasm2 is
used.

%m<n> 	 defines a memory start address for all subsequent data and 	 	
	 	 code (<n> or <$n> for hexadecimal).

%d 	 	 defines a data section whereby nothing that follows will be 	 	
	 	 interpreted as code.

%h	 	 defines a hexadecimal section whereby all subsequent data is 	
	 	 assumed hexadecimal and will not be interpreted.

%c	 	 defines a code section where anything that follows will be 	 	
	 	 interpreted.

%t	 	 defines a text section whereby anything that follows will be 	 	
	 	 formatted as zero terminated ascii strings.

#Equates

	 #id <n>	 defines a relationship between a numeric quantity <n> (<n> or 	
	 	 	 <$n> for hexadecimal) and an identifying string ‘id’.

.Labels

	 .id	 	 defines an identifier ‘id’ for an address in code or data.

;Line Comments

	 ;	 	 defines a line comment which will be ignored by the assembler.

{Block Comments}

	 {}	 	 defines a range to be ignored by the assembler. Must start and 	
	 	 	 end on blank line.

Expressions

	 Any numeric data can be modified by an expression using the following
operators:

Arithmetic:

+ add, - subtract, * multiply, / divide, % modulo

Logic:

& and, | inclusive OR, ^ exclusive OR, < shift left, > shift right

A comprehensive plasm assembler manual is available for download from the
PlasMa project.

Page of 20 23 Scamp-B v3.5 Adrian Rawson © 2021

http://philizound.co.uk/plasma/plasma.html#downloads

Scamp-B
Running Instructions
Scamp-B is a bundled one directory python application. This means that the
python language support files are included in its working directory. The advantage
of this is that it is freestanding and doesn’t require the host machine to have a
version of python loaded. The disadvantage however is that the working directory
is littered with a lot of meaningless but very important files which must not be
deleted.

As of Scamp-B34 all TOSB (.pls, .plh, .plm, etc) files reside in a subdirectory called
‘programs’.

The file structure is as follows:

scamp-b35	 	 	 The main distribution directory

/programs	 	 subdirectory for all program files

/sounds	 	 subdirectory for tone wav files

/images	 	 subdirectory containing scamp-b’s gifs

scamp-b35	 	 main program application

scampa	 	 assembler (application called by scamp-b)

ptr9	 	 	 paper tape reader application

makewaves		 tone generater application (link)

All other files and directories are for the python environment.

Running the executable’s scamp-b35 and ptr9 depend on your platform.

On Windows and RPi clicking on the executables will open the programs.

On PC Linux and macOS they must be invoked from a terminal by typing:

	 ./scamp-b35 &

	 ./ptr9 &

There is one other application program called ‘scampa’ which is the inbuilt
assembler. This command line program is called by Scamp-B so needn’t be run
independently.

When Scamp-B first runs it loads and runs a TOSB program called ‘programb.plh’.
This is a start-up demonstration and can be removed or renamed if not required.
This program resides in the top working directory alongside the application and
support files.

N.B. Screen Size:

Scamp-B requires a screen area of circa 1350 pixels by 650 pixels. This
does vary a little depending on the platform used. On Linux Ubuntu it
stretches to 1376 wide, a bit over the size of a 1366 screen, and this was
only achieved by overlapping the PTR program a little.

There are other differences with the various platform window managers and not
many have been tried. In particular the way windows are iconised and the way file
dialogs are handled.

Page of 21 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B
Running Issues
The PC Linux version requires Ubuntu 20.04. If it’s run under version 18.04 there is
an error: GLIBC_2.29 not found.

MacOS version occasionally falls asleep when loading paper tape from ptr9 via
LOAD PTR switch. Moving the mouse wakes it up.

Page of 22 23 Scamp-B v3.5 Adrian Rawson © 2021

Scamp-B
Modification History

Scamp-B v3.5:

1.Oper clear action now on both ‘CLR MEM’ and ‘ZERO’ keys. Oper clear override
enabled through use of ‘SLOW’ key. Oper clear resets counters and program timer.

2.STEP key now updates instruction count and jump count in Oper title.

3.Illegal instruction trap added.

scampa v2.1:

1.Fixed: Incorrect interpretation of ‘sti’ instruction.

2.Fixed: Hex address passed to ‘st’ instruction as literal causing
assembler error.

ptr-9:

1.Improved behaviour on macOS when using LOAD PTR.

Page of 23 23 Scamp-B v3.5 Adrian Rawson © 2021

	Introduction
	Description
	Layout
	Operation
	Running Instructions
	Running Issues
	Modification History

